2023
DOI: 10.1090/btran/141
|View full text |Cite
|
Sign up to set email alerts
|

Uniqueness in Cauchy problems for diffusive real-valued strict local martingales

Abstract: For a real-valued one dimensional diffusive strict local martingale, we provide a set of smooth functions in which the Cauchy problem has a unique classical solution under a local 1 2 \frac 12 -Hölder condition. Under the weaker Engelbert-Schmidt conditions, we provide a set in which the Cauchy problem has a unique weak solution. We exemplify our results using quadratic normal volatility models and the two dimensional Bessel process.

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...

Citation Types

0
0
0

Year Published

2023
2023
2023
2023

Publication Types

Select...
1

Relationship

0
1

Authors

Journals

citations
Cited by 1 publication
references
References 44 publications
0
0
0
Order By: Relevance