2018
DOI: 10.1007/s00013-018-1177-x
|View full text |Cite
|
Sign up to set email alerts
|

Uniqueness of completions and related topics

Abstract: A bounded subset of a normed linear space is said to be (diametrically) complete if it cannot be enlarged without increasing the diameter. A complete super set of a bounded set K having the same diameter as K is called a completion of K. In general, a bounded set may have different completions. We study normed linear spaces having the property that there exists a nontrivial segment with a unique completion. It turns out that this property is strictly weaker than the property that each complete set is a ball, a… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...

Citation Types

0
0
0

Year Published

2023
2023
2023
2023

Publication Types

Select...
1

Relationship

0
1

Authors

Journals

citations
Cited by 1 publication
references
References 17 publications
(13 reference statements)
0
0
0
Order By: Relevance