Abstract:Let us consider the space M(n, m) of all real or complex matrices on n rows and m columns. In 2000 Lesław Skrzypek proved the uniqueness of minimal projection of this space onto its subspace $$M(n,1)+M(1,m)$$
M
(
n
,
1
)
+
M
(
1
,
m
)
which consists of all sums of matrices with constant rows and matrices with constant columns. We generalize this result using some new methods proved by Lewicki and Skrzypek (J Approx Theory 148:71–91, 2007). Let S be a space of all functions from $$X\times Y \times Z$$
X
×
Y… Show more
Set email alert for when this publication receives citations?
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.