2019
DOI: 10.3934/dcdsb.2018300
|View full text |Cite
|
Sign up to set email alerts
|

Uniqueness of traveling front solutions for the Lotka-Volterra system in the weak competition case

Abstract: In this paper, we will prove the uniqueness of traveling front solutions with critical and noncritical speeds, connecting the origin and the positive equilibrium, for the classical competitive Lotka-Volterra system with diffusion in the weak competition, which partially answers the open problem presented by Tang and Fife in [17]. In fact, once these traveling front solutions have the same wave speed and the same asymptotic behavior at ξ = ±∞, they are unique up to translation.

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...

Citation Types

0
0
0

Year Published

2024
2024
2024
2024

Publication Types

Select...
1

Relationship

0
1

Authors

Journals

citations
Cited by 1 publication
references
References 23 publications
0
0
0
Order By: Relevance