“…Let t 0 ∈ [−1, 0] and η ∈ (0, 1) be fixed. For all δ ∈ (0, 3), there existsC * (δ) ∈ (0, ∞), for all E ∈ (0, ∞), there exists ε * (δ, η, E) ∈ (0, ∞), for all a such that sup s∈(−1,0) |s − t 0 | a(·, s) L ∞ (B 1 (0)) < ∞ and all local suitable solution v to (19) in Q 1 (0, 0) such that (0) |v(x, s)| 2 dx + ŝ −1B 1 (0) |∇v| 2 dxds ≤ E(s − t 0 ) η + , ∀s ∈ (−1, 0), a(·, s) L ∞ (B 1 (0)) ≤ ε * and dxds ≤ ε *imply that for all (x, t) ∈Q 1/2 (0, 0), for all r ∈ (0r −δ 5. By definition (·)+ := max(0, ·) 6.…”