South Africa is one of the most carbon-intensive economies in the world, but it is presently experiencing an energy crisis, as its utility company cannot meet the country’s energy demands. The use of renewable energy sources and retiring of coal-fired power stations are two important ways of alleviating this problem, as well as decarbonizing the grid. Repurposing retiring coal-fired power stations for renewable energy generation (RCP-RES) while maintaining energy sustainability and reliability has rarely been researched. This paper proposes macro- and microelements for repurposing retiring coal-fired power stations for renewable energy generation in Camden with the aim of improving power generation through a low-carbon system. In this model, concentrated solar power (CSP) and solar photovoltaics (SPV), in combination with storage technologies (STs), were employed for RCP-RES, owing to their excellent levels of availability in the retiring fleet regions. The simulation results show that the power densities of CSP and SPV are significantly lower compared with retiring a coal-fired power plant (CFPP). Both are only able to generate 8.4% and 3.84% rated capacity of the retired CFPP, respectively. From an economic perspective, the levelized cost of electricity (LCOE) analysis indicates that CSP is significantly cheaper than coal technology, and even cheaper when considering SPV with a storage system.