2020
DOI: 10.1155/2020/8425745
|View full text |Cite
|
Sign up to set email alerts
|

Unitarity of Singh-Hagen Model in D Dimensions

Abstract: The particle content of the Singh-Hagen model (SH) in D dimensions is revisited. We suggest a complete set of spin-projection operators acting on totally symmetric rank-3 fields. We give a general expression for the propagator and determine the coefficients of the SH model confirming previous results of the literature. Adding totally symmetric source terms we provide an unitarity analysis in D dimensions. * eliasleite@feg.unesp.br † rapsb −

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
3
2

Citation Types

0
9
0

Year Published

2020
2020
2024
2024

Publication Types

Select...
5
1

Relationship

0
6

Authors

Journals

citations
Cited by 6 publications
(9 citation statements)
references
References 21 publications
0
9
0
Order By: Relevance
“…For a three-index tensor that is antisymmetric in one pair of indices, the spin projectors were given in [28,43]. The spin projectors for totally symmetric three-tensors have been given also in [44]. To the best of our knowledge, the spin projectors for a general three-index tensor have not been given in the literature.…”
Section: Spin Projectorsmentioning
confidence: 99%
“…For a three-index tensor that is antisymmetric in one pair of indices, the spin projectors were given in [28,43]. The spin projectors for totally symmetric three-tensors have been given also in [44]. To the best of our knowledge, the spin projectors for a general three-index tensor have not been given in the literature.…”
Section: Spin Projectorsmentioning
confidence: 99%
“…Having recognized the relevance of lagrangian theories with multiple fields entangled in quadratic mixing, we recap now the efficient approach based on projector operators [11,15,[19][20][21][22][23][24][25] to assess the nature of their particle spectrum. In what follows we will, when stating general properties of the action, hide the index structure and consider a index-less superfield formalism as in Φ = {φ µνρ , φ µν , φ µ , φ}, considering field contractions in the intuitive form…”
Section: Projector Operatorsmentioning
confidence: 99%
“…which describe completeness of the projectors, orthogonality and hermitianicity of the operators 4 . The task of computing the explicit form of these operators, for the set of rank-2 and rank-3 fields has been only recently completed [15,19]. This paper's original contribution is to provide the missing operators to study the mixing between all the fields up to rank-3, including the scalar-tensor and vector-tensor transition operators.…”
Section: Projector Operatorsmentioning
confidence: 99%
See 2 more Smart Citations