Abstract. In this paper we formulate a conjecture about the unitary dual of the metaplectic group. We prove this conjecture for the case of Mp(4,R). The result is a strengthening, for this case, of the following result by the third author: any unitary representation of a real reductive Lie group with strongly regular infinitesimal character can be obtained by cohomological induction from a one dimensional representation. Strongly regular representations are those whose infinitesimal character is at least as regular as that of the trivial representation. We are extending the result to representations with omegaregular infinitesimal character: those whose infinitesimal character is at least as regular as that of the oscillator representation. The proof relies heavily on Parthasarathy's Dirac operator inequality. In one exception we explicitly calculate the signature of an intertwining operator to establish nonunitarity. Some of the results on intertwining operators presented in section 5.2 are joint work of Dan M. Barbasch and the first author.