2020
DOI: 10.15407/techned2020.02.067
|View full text |Cite
|
Sign up to set email alerts
|

Univariable Short-Term Forecast of Nodal Electrical Loads of Energy Systems

Abstract: The paper proposes the architecture of deep learning neural network for short-term nodal electrical load forecasting. The neural network combines the recurrent module LSTM (Long short-term memory) and the multilayer perceptron on the top. Input and output of the network connected with shortcut connection. In multilayer perceptron used scaled exponential linear unit (SELU) function as a nonlinear transformation in hidden neurons. A comparative analysis of two approaches to the short-term prediction of node load… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...

Citation Types

0
0
0

Year Published

2022
2022
2023
2023

Publication Types

Select...
3

Relationship

0
3

Authors

Journals

citations
Cited by 3 publications
references
References 6 publications
0
0
0
Order By: Relevance