This is an expanded version of the short report arXiv:1401.0539, where we studied the time evolution of (Renyi) entanglement entropies for the excited state defined by acting a given local operator on the ground state. In the present paper, we introduce (Renyi) entanglement entropies of given local operators which are defined by late time values of excesses of (Renyi) entanglement entropies. They measure the degrees of freedom of local operators and characterize them in conformal field theories from the viewpoint of quantum entanglement. We explain how to compute them in free massless scalar field theories and we also investigate their time evolution. Our results can be interpreted in terms of the relativistic propagation of entangled pairs. The main new results which we acquire in the present paper are as follows. Firstly, we provide an explanation which shows that (Renyi) entanglement entropies of a specific operator are given by (Renyi) entanglement entropies whose reduced density matrices are given by the binomial distribution. That operator is constructed of only the scalar field. Secondly, we found the sum rule which (Renyi) entanglement entropies of those local operators obey. Those local operators are located separately. Moreover we argue that (Renyi) entanglement entropies of specific operators in conformal field theories are given by (Renyi) entanglement entropies whose reduced density matrices are given by the binomial distribution. These specific operators are constructed of single-species operators. We also argue that general operators obey the sum rule which we mentioned above.