1974
DOI: 10.1007/bfb0061628
|View full text |Cite
|
Sign up to set email alerts
|

Universal Extensions and One Dimensional Crystalline Cohomology

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
1
1
1
1

Citation Types

1
139
0
6

Year Published

1979
1979
2017
2017

Publication Types

Select...
5
4

Relationship

0
9

Authors

Journals

citations
Cited by 151 publications
(146 citation statements)
references
References 0 publications
1
139
0
6
Order By: Relevance
“…(See [10], [21] and also [2].) Indeed, if 0 → V → M → M → 0 is an extension by a k-vector space V which is identified with a k-group scheme, it gives a morphism…”
Section: Remarks (I) Letmentioning
confidence: 99%
“…(See [10], [21] and also [2].) Indeed, if 0 → V → M → M → 0 is an extension by a k-vector space V which is identified with a k-group scheme, it gives a morphism…”
Section: Remarks (I) Letmentioning
confidence: 99%
“…Si l'on désigne la somme précédente par H 2 (X/W)^ (partie « divisorielle » de la torsion), on prouve en effet (6.16) que le quotient de la torsion de H 2 (X/W) par H^X/W)^ contient le quotient de l'espace des 1-formes globales fermées par le sous-espace des formes indéfiniment fermées (02.5.1), quotient qui peut être non nul comme le montrent des exemples de Mumford-Oda [56] et W. Lang [44]. L'outil essentiel qu'on utilise dans cette étude est une extension canonique du faisceau des covecteurs de Witt CW^x P^ le complexe de De Rham-Witt, variante de l'extension universelle de la théorie de Dieudonné cristalline ( [50], [10]). Cette extension permet notamment de faire le lien entre le sous-espace H^X/W)^ ci-dessus et le sous-espace canonique de ïî^(X/k) construit par Oda [56].…”
Section: Annales Scientifiques De L'école Normale Supérieureunclassified
“…Let A be an abelian variety over k, and let A be the universal vectorial extension of A. So is a connected commutative algebraic group over k equipped with a surjective morphism of algebraic groups p : A → A whose kernel is isomorphic to an algebraic vector group, and moreover, we have the universal property that p factors uniquely through every such extension of A by a vector group. The existence of this universal object goes back to Rosenlicht [43], but see also the more modern and general algebro-geometric treatment in [35]. The dimension of A is twice that of A.…”
Section: 3mentioning
confidence: 86%