Abstract. In this article we prove the equivalence of certain inequalities for Riesz means of eigenvalues of the Dirichlet Laplacian with a classical inequality of Kac. Connections are made via integral transforms including those of Laplace, Legendre, Weyl, and Mellin, and the Riemann-Liouville fractional transform. We also prove new universal eigenvalue inequalities and monotonicity principles for Dirichlet Laplacians as well as certain Schrödinger operators. At the heart of these inequalities are calculations of commutators of operators, sum rules, and monotonic properties of Riesz means. In the course of developing these inequalities we prove new bounds for the partition function and the spectral zeta function (cf. Corollaries 3.5-3.7) and conjecture about additional bounds.Manuscript received December 25, 2007; revised XXX XX, XXXX.