Breaking of structural symmetries of nanomagnetic systems is of great interest for the development of ultralow-power spintronic devices. The structural asymmetry in various magnetic heterostructures has been engineered to reveal novel fundamental interactions between electric currents and magnetization, resulting in spin-orbit-torques (SOTs) on the magnetization [1][2][3][4][5][6] , which are both fundamentally important and technologically promising for device applications. Such SOTs have been used to realize current-induced magnetization switching [2][3][4]7 and domain-wall 3 motion [8][9][10] in recent experiments. Typical heterostructures exhibiting SOTs consist of a ferromagnet (F) with a heavy nonmagnetic metal (NM) having strong spin-orbit coupling on one side, and an insulator (I) on the other side (referred to as NM/F/I structures, shown schematically in Fig. 1a, which break mirror symmetry in the growth direction). In terms of device applications, the use of SOTs in NM/F/I structures allows for a significantly lower write current compared to regular spin-transfer-torque (STT) devices 4 . It can greatly improve energy efficiency and scalability [1][2][3][4][5]11 for new SOT-based devices such as magnetic random access memory (SOT-MRAM), going beyond state-of-the-art STT-MRAM.For practical applications, a critical requirement to achieve high-density SOT memory is the ability to perform SOT-induced switching without the use of external magnetic fields, in particular for perpendicularly-magnetized ferromagnets, which show better scalability and thermal stability as compared to the in-plane case 12 .However, there are currently no practical solutions that meet this requirement. In NM/F/I heterostructures studied so far, the form of the resultant current-induced SOT alone does not allow for deterministic switching of a perpendicular ferromagnet, requiring application of an additional external in-plane magnetic field to switch the perpendicular magnetization [2][3][4] . (This is a very general feature of SOT devices, which can be explained by symmetry-based arguments, as discussed below). In such experiments, the external field allows for each current direction to favor a particular orientation for the out-of-plane component of magnetization, thereby resulting in deterministic perpendicular switching. However, this external field is undesirable 4 from a practical point of view. For device applications, it also reduces the thermal stability of the perpendicular magnet by lowering the zero-current energy barrier between the stable perpendicular states, resulting in a shorter retention time if used for memory.This work provides a solution to eliminate the use of external magnetic fields, bringing SOT-based spintronic devices such as SOT-MRAM closer to practical application. We present a new NM/F/I structure, which provides a novel spin-orbit torque, resulting in zero-field current-induced switching of perpendicular magnetization. Our device consists of a stack of Ta/Co 20 Fe 60 B 20 /TaO x layers, but also has a...