2022
DOI: 10.1016/j.patter.2022.100450
|View full text |Cite
|
Sign up to set email alerts
|

Universal machine learning framework for defect predictions in zinc blende semiconductors

Help me understand this report
View preprint versions

Search citation statements

Order By: Relevance

Paper Sections

Select...
1
1
1
1

Citation Types

0
30
1

Year Published

2022
2022
2024
2024

Publication Types

Select...
7
2
1

Relationship

1
9

Authors

Journals

citations
Cited by 32 publications
(31 citation statements)
references
References 85 publications
0
30
1
Order By: Relevance
“…Eqn (3) will yield the Fermi level where V A displays a (0/À1) charge transition or where V X displays a (+1/0) transition. 15,16,101,102 Based on these equations, four types of defect properties are thus computed, namely the two vacancy charge transition levels, the equilibrium defect formation energy (D.F.E. ), and the equilibrium Fermi level E F ; the latter two are estimated based on the charge neutrality condition.…”
Section: Papermentioning
confidence: 99%
“…Eqn (3) will yield the Fermi level where V A displays a (0/À1) charge transition or where V X displays a (+1/0) transition. 15,16,101,102 Based on these equations, four types of defect properties are thus computed, namely the two vacancy charge transition levels, the equilibrium defect formation energy (D.F.E. ), and the equilibrium Fermi level E F ; the latter two are estimated based on the charge neutrality condition.…”
Section: Papermentioning
confidence: 99%
“…Recently, machine learning techniques have been proposed as a faster method for predicting defect energetics, but so far they still require time-consuming defect data generation for model training and limit the applicability and generalizability of the defect energetic predictions. [18][19][20][21][22][23] Especially, graph neural network based deep-learning models [24][25][26][27] have become very popular for predicting materials properties and have been used for several bulk property predictions and their applicability needs to be tested for defect property predictions. Two key ingredients needed for accomplishing this task are: 1) a pretrained deep-learning model that can directly predict the total energy of perfect and defect structures, 2) a test DFT dataset of vacancy formation energies on which the DL model could be applied.…”
mentioning
confidence: 99%
“…Although the Heyd-Scuseria-Ernzerhof (HSE) functional may sometimes offer a bandgap that is near to the experimental one, it is not universal for every semiconductor, also the associated computational cost is higher for HSE. 56,[92][93][94][95][96] For example, the bandgap of ZnO is also underestimated by the hybrid HSE06 (∼2.70 eV) functional. 91 However, the prior report shows that GGA+U could be used to accurately report the bandgap (∼3.3 eV) of ZnO which is almost close to the experimental one.…”
Section: Resultsmentioning
confidence: 99%