2020
DOI: 10.1038/s41567-020-0978-6
|View full text |Cite
|
Sign up to set email alerts
|

Universal scaling laws rule explosive growth in human cancers

Help me understand this report
View preprint versions

Search citation statements

Order By: Relevance

Paper Sections

Select...
1
1
1
1

Citation Types

6
88
0

Year Published

2020
2020
2024
2024

Publication Types

Select...
6
1
1

Relationship

4
4

Authors

Journals

citations
Cited by 59 publications
(94 citation statements)
references
References 43 publications
6
88
0
Order By: Relevance
“…Median differences were found to be small, due to lack of treatment, but highly significant. These results indicate that surface regularity and rim width had prognostic value in silico, as happens in real tumors [ 22 24 , 50 ]. Poor prognosis was associated with larger rim widths and lower surface regularity.…”
Section: Resultsmentioning
confidence: 80%
See 2 more Smart Citations
“…Median differences were found to be small, due to lack of treatment, but highly significant. These results indicate that surface regularity and rim width had prognostic value in silico, as happens in real tumors [ 22 24 , 50 ]. Poor prognosis was associated with larger rim widths and lower surface regularity.…”
Section: Resultsmentioning
confidence: 80%
“…Despite the logistic nature of each voxel’s dynamics, the whole tumor showed sustained growth, first linear and then accelerating as a result of the diversification and interplay of the populations, in a process that selects for more aggressive clones. Curve fitting resulted in power law being the most accurate description, over other unbounded laws like exponential or linear radial, pointing towards a relationship between metabolic activity, evolutionary dynamics and aggressiveness [ 50 ]. The dynamics of simulated tumors changed from run to run as a result of the stochastic nature of the model, which allowed the influence of one-off events and parameter variability to be studied.…”
Section: Discussionmentioning
confidence: 99%
See 1 more Smart Citation
“…In addition, it can properly describe tumour relapse from an infiltrative disseminated tumour. More complex growth models can also describe the limited experimental data available [ 46 ], and others have recently been proposed to be in better agreement with new metabolic and longitudinal growth data [ 47 ]. However, for the analysis described in this paper, we will keep the simplest form given by Equation ( 2 ).…”
Section: Mathematical Modelsmentioning
confidence: 99%
“…The spread of populations is a phenomenon that exhibits resemblance with processes that are governed by the reaction-diffusion equations 10 . Invasion of various populations 11 and tumor growth 6 , 7 , 12 , 13 is described by different versions of Fisher-Kolomogorov-Petrovsky-Piskunov (FKPP) equation which in its classical form is described as: in which C ( x , t ) is the density of the population, R is the growth rate, and D is the diffusion constant for the population. Equation ( 1 ) represents a diffusion equation with a nonlinear reaction, that leads to the propagation of the Fisher waves.…”
Section: Introductionmentioning
confidence: 99%