Many clayey soils shrink as they dry, causing a shift of porosity from inside to outside the soil aggregates and leading to the formation of shrinkage cracks and/or surface subsidence. During swelling, shrinkage cracks begin to seal and/or the soil surface rises. Previous models have focused on describing shrinkage at the aggregate level, with little success in predicting soil cracking and subsidence. To remedy this shortcoming, we provide a unified, physically based set of governing equations for these three pore domains (aggregates, cracks, and subsidence) and predict the porosity distribution among domains as a function of soil water content and minimal (up to six) additional parameters. Examples collected from a variety of soils show how these functions describe shrinkage of soil samples in the laboratory; quantify the relationships among soil suction, soil shrinkage, and water content using the same set of parameters; and predict sealing of soil cracks in the field. This approach provides the framework for accurate and unified hydromechanical modeling of swelling soils.Many clayey soils shrink when drying and swell when wetted. Such soils-often classified as Vertisols or vertic intergrades-are found across the globe, including within numerous agricultural and urban regions. Vertic soils include significant variation in physical properties, such as bulk density (Peng and Horn, 2007), pore size distribution (Kutílek, 1996), and field-saturated hydraulic conductivity (Messing and