Simulating models for quantum correlated matter unveils the inherent limitations of deterministic classical computations. In particular, in the case of quantum Monte Carlo methods, this is manifested by the emergence of negative weight configurations in the sampling, that is, the sign problem (SP). There have been several recent calculations which exploit the SP to locate underlying critical behavior. Here, utilizing a metric that quantifies phase-space ergodicity in such sampling, the Hamming distance, we suggest a significant advance on these ideas to extract the location of quantum critical points in various fermionic models, in spite of the presence of a severe SP. Combined with other methods, exact diagonalization in our case, it elucidates both the nature of the different phases as well as their location, as we demonstrate explicitly for the honeycomb and triangular Hubbard models, in both their U(1) and SU(2) forms. Our approach exemplifies a possible path allowing the exploration of the phase diagram of a variety of fermionic quantum models hitherto considered to be impractical via quantum Monte Carlo simulations.