Abstract. We study the phenomenon of Type-II curvature blow-up in mean curvature flows of rotationally symmetric noncompact embedded hypersurfaces. Using analytic techniques based on formal matched asymptotics and the construction of upper and lower barrier solutions enveloping formal solutions with prescribed behavior, we show that for each initial hypersurface considered, a mean curvature flow solution exhibits the following behavior near the "vanishing" time T : (1) The highest curvature concentrates at the tip of the hypersurface (an umbilic point), and for each choice of the parameter γ > 1/2, there is a solution with the highest curvature blowing up at the rate (T − t) −(γ+1/2) . (2) In a neighborhood of the tip, the solution converges to a translating soliton which is a higher-dimensional analogue of the "Grim Reaper" solution for the curve-shortening flow. (3) Away from the tip, the flow surface approaches a collapsing cylinder at a characteristic rate dependent on the parameter γ.