Search citation statements
Paper Sections
Citation Types
Year Published
Publication Types
Relationship
Authors
Journals
We introduce the theory of thermodynamic relativity, a unified theoretical framework for describing both entropies and velocities, and their respective physical disciplines of thermodynamics and kinematics, which share a surprisingly identical description with relativity. This is the first study to generalize relativity in a thermodynamic context, leading naturally to anisotropic and nonlinear adaptations of relativity; thermodynamic relativity constitutes a new path of generalization, as compared to the “traditional” passage from special to general theory based on curved spacetime. We show that entropy and velocity are characterized by three identical postulates, which provide the basis of a broader framework of relativity: (1) no privileged reference frame with zero value; (2) existence of an invariant and fixed value for all reference frames; and (3) existence of stationarity. The postulates lead to a unique way of addition for entropies and for velocities, called kappa-addition. We develop a systematic method of constructing a generalized framework of the theory of relativity, based on the kappa-addition formulation, which is fully consistent with both thermodynamics and kinematics. We call this novel and unified theoretical framework for simultaneously describing entropy and velocity “thermodynamic relativity”. From the generality of the kappa-addition formulation, we focus on the cases corresponding to linear adaptations of special relativity. Then, we show how the developed thermodynamic relativity leads to the addition of entropies in nonextensive thermodynamics and the addition of velocities in Einstein’s isotropic special relativity, as in two extreme cases, while intermediate cases correspond to a possible anisotropic adaptation of relativity. Using thermodynamic relativity for velocities, we start from the kappa-addition of velocities and construct the basic formulations of the linear anisotropic special relativity; e.g., the asymmetric Lorentz transformation, the nondiagonal metric, and the energy-momentum-velocity relationships. Then, we discuss the physical consequences of the possible anisotropy in known relativistic effects, such as, (i) matter-antimatter asymmetry, (ii) time dilation, and (iii) Doppler effect, and show how these might be used to detect and quantify a potential anisotropy. Supplementary Information The online version contains supplementary material available at 10.1038/s41598-024-72779-0.
We introduce the theory of thermodynamic relativity, a unified theoretical framework for describing both entropies and velocities, and their respective physical disciplines of thermodynamics and kinematics, which share a surprisingly identical description with relativity. This is the first study to generalize relativity in a thermodynamic context, leading naturally to anisotropic and nonlinear adaptations of relativity; thermodynamic relativity constitutes a new path of generalization, as compared to the “traditional” passage from special to general theory based on curved spacetime. We show that entropy and velocity are characterized by three identical postulates, which provide the basis of a broader framework of relativity: (1) no privileged reference frame with zero value; (2) existence of an invariant and fixed value for all reference frames; and (3) existence of stationarity. The postulates lead to a unique way of addition for entropies and for velocities, called kappa-addition. We develop a systematic method of constructing a generalized framework of the theory of relativity, based on the kappa-addition formulation, which is fully consistent with both thermodynamics and kinematics. We call this novel and unified theoretical framework for simultaneously describing entropy and velocity “thermodynamic relativity”. From the generality of the kappa-addition formulation, we focus on the cases corresponding to linear adaptations of special relativity. Then, we show how the developed thermodynamic relativity leads to the addition of entropies in nonextensive thermodynamics and the addition of velocities in Einstein’s isotropic special relativity, as in two extreme cases, while intermediate cases correspond to a possible anisotropic adaptation of relativity. Using thermodynamic relativity for velocities, we start from the kappa-addition of velocities and construct the basic formulations of the linear anisotropic special relativity; e.g., the asymmetric Lorentz transformation, the nondiagonal metric, and the energy-momentum-velocity relationships. Then, we discuss the physical consequences of the possible anisotropy in known relativistic effects, such as, (i) matter-antimatter asymmetry, (ii) time dilation, and (iii) Doppler effect, and show how these might be used to detect and quantify a potential anisotropy. Supplementary Information The online version contains supplementary material available at 10.1038/s41598-024-72779-0.
We develop the kappa-tail fitting technique, which analyzes observations of power-law tails of distributions and energy flux spectra, and connects them to theoretical modeling of kappa distributions, to determine the thermodynamics of the examined space plasma. In particular, we (i) construct the associated mathematical formulation; (ii) prove its decisive lead for determining whether the observed power-law is associated with kappa distributions; and (iii) provide a validation of the technique using pseudo-observations of typical input plasma parameters. Then, we apply this technique to a case study by determining the thermodynamics of solar energetic particle (SEP) protons, for an SEP event observed on 2021 April 17, by the Parker Solar Probe (PSP)/Integrated Science Investigation of the Sun instrument suite on board PSP. The results show SEP temperatures and densities of the order of ∼1 MeV and ∼5 × 10−7 cm−3, respectively.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.