Search citation statements
Paper Sections
Citation Types
Publication Types
Relationship
Authors
Journals
Batch effects, undesirable sources of variance across multiple experiments, present a substantial hurdle for scientific and clinical discoveries. Specifically, the presence of batch effects can create both spurious discoveries and hide veridical signals, contributing to the ongoing reproducibility crisis. Typical approaches to dealing with batch effects conceptualize 'batches' as an associational effect, rather than a causal effect, despite the fact that the sources of variance that comprise the batch -- potentially including experimental design and population demographics -- causally impact downstream inferences. We therefore cast batch effects as a causal problem rather than an associational problem. This reformulation enables us to make explicit the assumptions and limitations of existing approaches for dealing with batch effects. We therefore develop causal batch effect strategies---Causal Dcorr for discovery of batch effects and Causal ComBat for mitigating batch effects -- which build upon existing statistical associational methods by incorporating modern causal inference techniques. We apply these strategies to a large mega-study of human connectomes assembled by the Consortium for Reliability and Reproducibility, consisting of 24 batches including over 1700 individuals to illustrate that existing approaches create more spurious discoveries (false positives) and miss more veridical signals (true positives) than our proposed approaches. Our work therefore introduces a conceptual framing, as well as open source code, for combining multiple distinct datasets to increase confidence in claims of scientific and clinical discoveries.
Batch effects, undesirable sources of variance across multiple experiments, present a substantial hurdle for scientific and clinical discoveries. Specifically, the presence of batch effects can create both spurious discoveries and hide veridical signals, contributing to the ongoing reproducibility crisis. Typical approaches to dealing with batch effects conceptualize 'batches' as an associational effect, rather than a causal effect, despite the fact that the sources of variance that comprise the batch -- potentially including experimental design and population demographics -- causally impact downstream inferences. We therefore cast batch effects as a causal problem rather than an associational problem. This reformulation enables us to make explicit the assumptions and limitations of existing approaches for dealing with batch effects. We therefore develop causal batch effect strategies---Causal Dcorr for discovery of batch effects and Causal ComBat for mitigating batch effects -- which build upon existing statistical associational methods by incorporating modern causal inference techniques. We apply these strategies to a large mega-study of human connectomes assembled by the Consortium for Reliability and Reproducibility, consisting of 24 batches including over 1700 individuals to illustrate that existing approaches create more spurious discoveries (false positives) and miss more veridical signals (true positives) than our proposed approaches. Our work therefore introduces a conceptual framing, as well as open source code, for combining multiple distinct datasets to increase confidence in claims of scientific and clinical discoveries.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.