Search citation statements
Paper Sections
Citation Types
Year Published
Publication Types
Relationship
Authors
Journals
Solving the university timetabling problem is crucial as it ensures efficient use of resources, minimises scheduling conflicts, and enhances overall productivity. This paper presents a comprehensive review of university timetabling problems using integer programming algorithms. This study explores various integer programming techniques and their effectiveness in optimising complex scheduling requirements in higher education institutions. We analysed 95 integer programming-based models developed for solving university timetabling problems, covering relevant research from 1990 to 2023. The goal is to provide insights into the evolution of these algorithms and their impact on improving university scheduling. We identify that the implementation rate of models using integer programming is 98%, which is much higher than 34% implementation rates using meta-heuristics algorithms from the existing review. The integer programming models are analysed by the problem types, solutions, tools, and datasets. For three types of timetabling problems including course timetabling, class timetabling, and exam timetabling, we dive deeper into the commercial solvers CPLEX (47), Gurobi (11), Lingo (5), Open Solver (4), C++ GLPK (4), AIMMS (2), GAMS (2), XPRESS (2), CELCAT (1), AMPL (1), and Google OR-Tools CP-SAT (1) and identify that CPLEX is the most frequently used integer programming solver. We explored the uses of machine learning algorithms and the hybrid solutions of combining the integer programming and machine learning algorithms in higher education timetabling solutions. We also identify areas for future work, which includes an emphasis on using integer programming algorithms in other industrial areas, and using machine learning models for university timetabling to allow data-driven solutions.
Solving the university timetabling problem is crucial as it ensures efficient use of resources, minimises scheduling conflicts, and enhances overall productivity. This paper presents a comprehensive review of university timetabling problems using integer programming algorithms. This study explores various integer programming techniques and their effectiveness in optimising complex scheduling requirements in higher education institutions. We analysed 95 integer programming-based models developed for solving university timetabling problems, covering relevant research from 1990 to 2023. The goal is to provide insights into the evolution of these algorithms and their impact on improving university scheduling. We identify that the implementation rate of models using integer programming is 98%, which is much higher than 34% implementation rates using meta-heuristics algorithms from the existing review. The integer programming models are analysed by the problem types, solutions, tools, and datasets. For three types of timetabling problems including course timetabling, class timetabling, and exam timetabling, we dive deeper into the commercial solvers CPLEX (47), Gurobi (11), Lingo (5), Open Solver (4), C++ GLPK (4), AIMMS (2), GAMS (2), XPRESS (2), CELCAT (1), AMPL (1), and Google OR-Tools CP-SAT (1) and identify that CPLEX is the most frequently used integer programming solver. We explored the uses of machine learning algorithms and the hybrid solutions of combining the integer programming and machine learning algorithms in higher education timetabling solutions. We also identify areas for future work, which includes an emphasis on using integer programming algorithms in other industrial areas, and using machine learning models for university timetabling to allow data-driven solutions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.