2023
DOI: 10.1609/aaai.v37i8.26222
|View full text |Cite
|
Sign up to set email alerts
|

Unlabeled Imperfect Demonstrations in Adversarial Imitation Learning

Abstract: Adversarial imitation learning has become a widely used imitation learning framework. The discriminator is often trained by taking expert demonstrations and policy trajectories as examples respectively from two categories (positive vs. negative) and the policy is then expected to produce trajectories that are indistinguishable from the expert demonstrations. But in the real world, the collected expert demonstrations are more likely to be imperfect, where only an unknown fraction of the demonstrations are optim… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...

Citation Types

0
0
0

Year Published

2024
2024
2024
2024

Publication Types

Select...
2
1

Relationship

0
3

Authors

Journals

citations
Cited by 3 publications
references
References 29 publications
0
0
0
Order By: Relevance