Bacillus virus Bam35 is the model Betatectivirus and member of the Tectiviridae family, which is composed of tailless, icosahedral, and membrane-containing bacteriophages. The interest in these viruses has greatly increased in recent years as they are thought to be an evolutionary link between diverse groups of prokaryotic and eukaryotic viruses. Additionally, betatectiviruses infect bacteria of the Bacillus cereus group, known for their applications in industry and notorious since it contains many pathogens. Here, we present the first protein-protein interactions network for a tectivirus-host system by studying the Bam35- Bacillus thuringiensis model using a novel approach that integrates the traditional yeast two-hybrid system and Illumina high-throughput sequencing. We generated and thoroughly analyzed a genomic library of Bam35’s host B. thuringiensis HER1410 and screened interactions with all the viral proteins using different combinations of bait-prey couples. In total, this screen resulted in the detection of over 4,000 potential interactions, of which 183 high-confidence interactions were defined as part of the core virus-host interactome. Overall, host metabolism proteins and peptidases are particularly enriched within the detected interactions, distinguishing this host-phage system from the other reported host-phage protein-protein interaction networks (PPIs). Our approach also suggests biological roles for several Bam35 proteins of unknown function, resulting in a better understanding of the Bam35- B. thuringiensis interaction at the molecular level.