2023
DOI: 10.33434/cams.1327372
|View full text |Cite
|
Sign up to set email alerts
|

Unlimited Lists of Quadratic Integers of Given Norm Application to Some Arithmetic Properties

Georges GRAS

Abstract: We use the polynomials $m_s(t) = t^2 - 4 s$, $s \in \{-1, 1\}$, in an elementary process giving unlimited lists of {\it fundamental units of norm $s$}, of real quadratic fields, with ascending order of the discriminants. As $t$ grows from $1$ to an upper bound $\BB$, for each {\it first occurrence} of a square-free integer $M \geq 2$, in the factorization $m_s(t) =: M r^2$, the unit $\frac{1}{2} \big(t + r \sqrt{M}\big)$ is the fundamental unit of norm $s$ of $\Q(\sqrt M)… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...

Citation Types

0
0
0

Publication Types

Select...

Relationship

0
0

Authors

Journals

citations
Cited by 0 publications
references
References 36 publications
0
0
0
Order By: Relevance

No citations

Set email alert for when this publication receives citations?