The isomeric purity of products from certain group-selective reactions can be significantly amplified when reactib:~:; can occur sequentially. The theoretical basis for a strategy that exploits reactions with modest enantiotopic group selectivity for asymmetric synthesis is described. The relationships between conversion, yield, and isomeric purity for such a process are calculated using a simple kinetic model. A simple method for selecting candidate group-selective reactions from known face-selective reactions is presented. Application of the strategy is illustrated with the reduction of D-glucose and D-galactose derived dialdehydes with B-isopinocampheyl-9-borabicyclo[3.3.1]nonane (~l~i n e -B o r a n e B ) . DALE E. WARD, YADONC LIU et CHUNC K. RHEE. Can. J. Chem. 72, 1429Chem. 72, (1994.On peut grandement amCliorer la puretC isomtrique des produits de certaines rCactions sClectives pour des groupes si l'on effectue ces rkactions d'une f a~o n ~Cquentielle. On dCcrit les bases thkoriques d'une stratkgie qui exploite des rkactions possCdant de modestes sClectivitCs Cnantiotopiques pour des groupes B des fins de synthbses asymitriques. Faisant appel B un modble cinktique simple, on peut calculer facilement les relations entre la conversion, le rendement et la puretC isomCrique de tels processus. On prCsente une mtthode simple permettant de choisir les rCactions plausibles pour leur sClectivitC pour des groupes B partir de rkactions connues pour leur sClectivitC pour les faces. On illustre l'application de la stratCgie B la rCduction des dialdthydes dCrivCs du D-glucose et du D-galactose par le B-isopinocamphCyl-9-borabicyclo[3.3.l]nonane (~l~i n e -B o r a n e B ) .[Traduit par la RCdaction]
IntroductionThe development of methods for the synthesis of enantiomerically pure compounds has attracted considerable attention from synthetic organic chemists in recent years (1-3). In particular, significant advances have been achieved in the enantioselective conversion of achiral substrates into chiral products (1-3). Such transformations require a process where enantiotopic (4) faces or groups in the substrate are differentiated (5). This type of differentiation is possible since enantiotopic relationships become diastereotopic in the dissymmetric environment provided by a chiral reagent, auxiliary, solvent, additive, or catalyst (including enzymes (6) and abzymes (7)). While many methods that achieve high levels of enantiotopic face selectivity have been developed (1-3), nonenzymatic2 examples of efficient enantiotopic group selectivity are less common (8).An interesting feature of certain processes where enantiotopic groups can react sequentially is the coupling of an asymmetric synthesis with a kinetic resolution (9) to produce products with enhanced levels of enantiomeric p~r i t y .~ Sih and co-workers (IOU, b) explicitly demonstrated the viability of this approach in the enzyme-catalyzed hydrolysis of meso diacetates. Bosnich and co-workers (1 1) pointed out that enhanced enantiomeric purity by kinetic resoluti...