The recent development of energy storage systems that combine high efficiency with the possibility of inexpensive application is required in order to satisfy the ever-increasing demand for energy around worldwide. The development of sustainable electrode materials with enhanced capacity plays a pivotal role in advancing these energy storage systems. It is noteworthy that carbon-based materials have shown great potential as very promising options for fulfilling the role of negative electrode materials in sodium-ion batteries (SIBs). However, the electrochemical performance can be improved through the doping of nitrogen into carbonaceous materials. In this work, we have synthesized successfully activated Aegle marmelos hard carbon (AC-AMHC) and nitrogen-doped AC-AMHC as anodes for SIBs. The AC-AMHC and nitrogen-doped activated AMHC electrodes exhibit specific discharge capacities of ∼177 and ∼207 mA h g −1 , respectively, at a current density of 10 mA g −1 . The AC-AMHC and nitrogen-doped AC-AMHC electrodes exhibit outstanding cycling stability, maintaining high reversible capacities of ∼47 and ∼66 mA h g −1 at 500 mA g −1 up to 2000 cycles. Subsequently, a nitrogen-doped AC-AMHC anode and NVP cathode are used to fabricate a Na-ion full cell, which achieves a specific discharge capacity of ∼67 mA h g −1 at a C/10 rate.