Search citation statements
Paper Sections
Citation Types
Year Published
Publication Types
Relationship
Authors
Journals
PurposeIn this research, we seek to understand the effects of artificial intelligence (AI) and knowledge management (KM) processes in enhancing proactive green innovation (PGI) within oil and gas organizations. It also aims to investigate the moderator role of trust and sustainability in these relationships.Design/methodology/approachThis paper employs a quantitative analysis. Surveys have been gathered from the middle-line managers of twenty-four oil and gas government organizations to evaluate the perceptions of the managers towards AI, KM processes, trust, sustainability measures and proactive measures toward green innovation. Analytical and statistical tools that were employed in this study, including structural equation modeling with SmartPLSv3.9, have been used to analyze the data and to examine the measurement and structural models of this study.FindingsThe study results reveal a significant and positive impact of AI utilization, KM processes and PGI within oil and gas organizations. Furthermore, trust and sustainability turn out to be viable moderators affecting, and influencing the strength and direction of AI, KM and PGI relationships. In particular, higher levels of trust and more substantial sustainability commitments enhance the positive impact of AI and KM on green innovation outcomes.Practical implicationsUnderstanding the impact of AI, KM, trust and sustainability offers valuable insights for organizational leaders and policymakers seeking to promote proactive green innovation within the oil and gas industry. Thus, organizations can increase the efficiency of sustainable product development, process improvement and environmental management by using robust AI technologies and effective KM systems. Furthermore, fostering trust among stakeholders and embedding sustainability principles into organizational culture can amplify the effectiveness of AI and KM initiatives in driving green innovation outcomes.Originality/valueThis study extends the current knowledge by assessing the effect of AI and KM on proactive green innovation while accounting for trust and sustainability as moderators. Utilizing quantitative methods offers a nuanced understanding of the complex interactions between these variables, thereby advancing theoretical knowledge in the fields of innovation management, sustainability and organizational behavior. Additionally, the identification of specific mechanisms and contextual factors enriches practical insights for organizational practitioners striving for a practical understanding of the dynamics of the complexities of sustainable innovation in an AI-driven era.
PurposeIn this research, we seek to understand the effects of artificial intelligence (AI) and knowledge management (KM) processes in enhancing proactive green innovation (PGI) within oil and gas organizations. It also aims to investigate the moderator role of trust and sustainability in these relationships.Design/methodology/approachThis paper employs a quantitative analysis. Surveys have been gathered from the middle-line managers of twenty-four oil and gas government organizations to evaluate the perceptions of the managers towards AI, KM processes, trust, sustainability measures and proactive measures toward green innovation. Analytical and statistical tools that were employed in this study, including structural equation modeling with SmartPLSv3.9, have been used to analyze the data and to examine the measurement and structural models of this study.FindingsThe study results reveal a significant and positive impact of AI utilization, KM processes and PGI within oil and gas organizations. Furthermore, trust and sustainability turn out to be viable moderators affecting, and influencing the strength and direction of AI, KM and PGI relationships. In particular, higher levels of trust and more substantial sustainability commitments enhance the positive impact of AI and KM on green innovation outcomes.Practical implicationsUnderstanding the impact of AI, KM, trust and sustainability offers valuable insights for organizational leaders and policymakers seeking to promote proactive green innovation within the oil and gas industry. Thus, organizations can increase the efficiency of sustainable product development, process improvement and environmental management by using robust AI technologies and effective KM systems. Furthermore, fostering trust among stakeholders and embedding sustainability principles into organizational culture can amplify the effectiveness of AI and KM initiatives in driving green innovation outcomes.Originality/valueThis study extends the current knowledge by assessing the effect of AI and KM on proactive green innovation while accounting for trust and sustainability as moderators. Utilizing quantitative methods offers a nuanced understanding of the complex interactions between these variables, thereby advancing theoretical knowledge in the fields of innovation management, sustainability and organizational behavior. Additionally, the identification of specific mechanisms and contextual factors enriches practical insights for organizational practitioners striving for a practical understanding of the dynamics of the complexities of sustainable innovation in an AI-driven era.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.