Decentralized machine learning (FL) is a system that uses federated learning (FL). Without disclosing locally stored sensitive information, FL enables multiple clients to work together to solve conventional distributed ML problems coordinated by a central server. In order to classify FLs, this research relies heavily on machine learning and deep learning techniques. The next generation of wireless networks is anticipated to incorporate unmanned aerial vehicles (UAVs) like drones into both civilian and military applications. The use of artificial intelligence (AI), and more specifically machine learning (ML) methods, to enhance the intelligence of UAV networks is desirable and necessary for the aforementioned uses. Unfortunately, most existing FL paradigms are still centralized, with a singular entity accountable for network-wide ML model aggregation and fusion. This is inappropriate for UAV networks, which frequently feature unreliable nodes and connections, and provides a possible single point of failure. There are many challenges by using high mobility of UAVs, of loss of packet frequent and difficulties in the UAV between the weak links, which affect the reliability while delivering data. An earlier UAV failure is happened by the unbalanced conception of energy and lifetime of the network is decreased; this will accelerate consequently in the overall network. In this paper, we focused mainly on the technique of security while maintaining UAV network in surveillance context, all information collected from different kinds of sources. The trust policies are based on peer-to-peer information which is confirmed by UAV network. A pre-shared UAV list or used by asymmetric encryption security in the proposal system. The wrong information can be identified when the UAV the network is hijacked physically by using this proposed technique. To provide secure routing path by using Secure Location with Intrusion Detection System (SLIDS) and conservation of energy-based prediction of link breakage done by location-based energy efficient routing (LEER) for discovering path of degree connectivity. Thus, the proposed novel architecture is named as Decentralized Federate Learning- Secure Location with Intrusion Detection System (DFL-SLIDS), which achieves 98% of routing overhead, 93% of end-to-end delay, 92% of energy efficiency, 86.4% of PDR and 97% of throughput.