2023
DOI: 10.1002/mp.16331
|View full text |Cite
|
Sign up to set email alerts
|

Unpaired low‐dose computed tomography image denoising using a progressive cyclical convolutional neural network

Abstract: BackgroundReducing the radiation dose from computed tomography (CT) can significantly reduce the radiation risk to patients. However, low‐dose CT (LDCT) suffers from severe and complex noise interference that affects subsequent diagnosis and analysis. Recently, deep learning‐based methods have shown superior performance in LDCT image‐denoising tasks. However, most methods require many normal‐dose and low‐dose CT image pairs, which are difficult to obtain in clinical applications. Unsupervised methods, on the o… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
1
1

Citation Types

0
1
0
1

Year Published

2023
2023
2025
2025

Publication Types

Select...
6

Relationship

0
6

Authors

Journals

citations
Cited by 8 publications
(2 citation statements)
references
References 42 publications
0
1
0
1
Order By: Relevance
“…In einer anderen Studie wurde ein progressives zyklisches neuronales Faltungsnetzwerk („progressive cyclic convolutional neural network“, PCCNN) für den Einsatz in Niedrigdosis-CT-Bildern vorgestellt [ 5 ]. Das Modell wurde entwickelt, um Rauschen aus CT-Bildern zu entfernen und gleichzeitig den Speicherbedarf zu minimieren, wodurch es sich besser für den klinischen Einsatz eignet.…”
Section: Künstliche Intelligenz In Der Niedrigdosis-ctunclassified
“…In einer anderen Studie wurde ein progressives zyklisches neuronales Faltungsnetzwerk („progressive cyclic convolutional neural network“, PCCNN) für den Einsatz in Niedrigdosis-CT-Bildern vorgestellt [ 5 ]. Das Modell wurde entwickelt, um Rauschen aus CT-Bildern zu entfernen und gleichzeitig den Speicherbedarf zu minimieren, wodurch es sich besser für den klinischen Einsatz eignet.…”
Section: Künstliche Intelligenz In Der Niedrigdosis-ctunclassified
“…For instance, Zhang et al proposed a denoising convolutional neural network (DnCNN) [17] which can achieve a better performance than traditional block matching and 3D collaborative filtering (BM3D) denoising methods [18] with an extremely simple architecture. Currently, CNN-based denoising methods have been widely used in X-ray [19], PET [20,21], CT [22,23], and MRI images [24]. Regarding DW images, Wang et al first proposed a joint denoising CNN (JD-CNN) model which can effectively reduce noise by taking multiple b-value DW images as the multichannel input of the network [25].…”
Section: Introductionmentioning
confidence: 99%