Reactions in a sealed glass tube between melted pyrazine (pyz) and a Cs(3)Re(6)Q(i)(7)Br(i)Br(a)(6).H(2)O inorganic rhenium cluster compound (Q = S, Se; "i" for inner and "a" for apical positions) containing [Re(6)Q(i)(7)Br(i)Br(a)(6)](3-) units led to the substitution of three apical bromine ligands by three pyrazine groups with the formation of 3 CsBr as a byproduct. The resulting fac-Re(6)Q(i)(7)Br(i)(pyz)(a)(3)Br(a)(3) building unit, based on a Re(6) metal atom cluster, is neutral and noncentrosymmetric and exhibits an ambivalent organic/inorganic nature owing to the opposite disposition of the three apical pyrazine groups versus the three apical bromine atoms. These compounds were characterized by single-crystal and powder X-ray diffraction, elemental and thermal analyses, and luminescence measurements. The crystal structure of fac-Re(6)Q(i)(7)Br(i)(pyz)(a)(3)Br(a)(3).xH(2)O (Q = S (1) and Se (2)) displays an original, neutral metal-organic framework based on the self-assembling of fac-Re(6)Q(i)(7)Br(i)(pyz)(a)(3)Br(a)(3) hybrid building units. The latter are held together by supramolecular interactions: pi-pi, hydrogen bonds (C-H...N, C-H...Br(a), and C-H...Br(i)), and van der Waals contacts. It gives rise to a honeycomb porous structure of parallel hollow open-ended channels wherein the water molecules are located. Their removal does not lead to the collapsing of the structural edifice. The channel walls are constituted by hydrogen atoms from pyrazine as well as apical bromine from the cluster unit. To our knowledge, the structures of 1 and 2 constitute with that of PTMTC (perchlorotriphenylmethyl functionalized by carboxylic group radicals) one of the rare examples of stable open frameworks stabilized by supramolecular interactions between neutral molecules. Moreover, 1 is the first example of luminescent Re(6) compound built up from a noncentrosymmetric Re(6)S(i)(7)Br(i) cluster core.