The polymerase activity of HIV-1 reverse transcriptase (RT) is entirely dependent on the heterodimeric structure of the enzyme. Accordingly, RT dimerization represents a target for the development of a new therapeutic class of HIV inhibitors. We previously demonstrated that the N-3-ethyl derivative of 2',5'-bis-O-(tert-butyldimethylsilyl)-beta-D-ribofuranosyl]-3'-spiro-5' '-(4' '-amino-1' ',2' '-oxathiole-2' ',2' '-dioxide)thymine (TSAO-T) destabilizes the inter-subunit interactions of HIV-1 RT [Sluis-Cremer, N.; Dmietrinko, G. I.; Balzarini, J.; Camarasa, M.-J.; Parniak, M. A. Biochemistry 2000, 39, 1427-1433]. In the current study, we evaluated the ability of 64 TSAO-T derivatives to inhibit RT dimerization using a novel screening assay. Five derivatives were identified with improved activity compared to TSAO-T. Four of these harbored hydrophilic or aromatic substituents at the N3 position. Furthermore, a good correlation between the ability of the TSAO-T derivatives to inhibit RT dimerization and the enzyme's polymerase activity was also observed. This study provides an important framework for the rational design of more potent inhibitors of RT dimerization.