In some induced-ovulating species, beta nerve growth factor (β-NGF) has important roles in ovulation, though data for rabbits are still inconclusive. In this study we first synthesized functional recombinant β-NGF from rabbit tissue (rrβ-NGF) to address the following objectives: 1) to compare rabbit β-NGF amino acid sequence with those of other induced- or spontaneous-ovulating species; 2) to assess the effects of rrβ-NGF on rabbit sperm viability and motility, and 3) to examine the
in vivo
ovulation inducing effect of rrβ-NGF added to the seminal dose in rabbit does. The
NGF
gene in rabbit prostate tissue was sequenced by Rapid Amplification of cDNA Ends and annotated in GenBank (KX528686). Recombinant rβ-NGF was produced in CHO cells and purified by affinity chromatography. Once confirmed by Western blotting and mass spectrometry (MALDI-TOF) that the amino acid sequence of the recombinant protein corresponded to β-NGF, its functionality was validated in PC12 cells in a successful dose-response study over 8 days. The amino acid sequence of prostate rabbit NGF differed to that of other species mainly in its receptor binding sites. In all the spontaneous ovulating species examined, compared with rabbit, alanine and proline residues, which interact with the high-affinity receptor, were replaced by a serine. In rabbits, asparagine and methionine were substituted by lysine at the low-affinity receptor binding site. In time- and dose-response experiments, the
in vitro
addition of rrβ-NGF to the ejaculate did not affect sperm viability whereas sperm motility parameters were enhanced by the addition of 1 μg/mL of the neuropeptide. Addition of this same concentration of rrβ-NGF to the seminal dose administered via the intravaginal route in does induced ovulation with a delayed LH peak, leading to a plasma progesterone increase, gestation and delivery. Our findings suggest that rrβ-NGF could be a useful option for biotechnological and reproduction assisted techniques in rabbits but further studies are needed.