Distinguishing and understanding the nonradiative recombination of charges are crucial for optimizing quantum-dot light-emitting diodes (QLEDs). Auger recombination (AR), a well-known nonradiative process, is widely recognized to occur in QLEDs. However, it has not yet been directly observed in a real working QLED. Here, the AR effect is verified in the QLED at temperatures of <150 K. At low temperatures, the QLED exhibits a unique S-shaped external quantum efficiency (EQE) evolution as the driving current density increases. Experimental and modeling results indicate that this S-shaped EQE results from the asynchronous changes in the behavior of injection of electrons and holes into the quantum-dot emission layer. At low driving voltages, both electron and hole currents are limited by the Fowler−Nordheim (F−N) tunneling behavior. The relatively low barrier for electrons leads to overwhelming electron injection and seriously imbalanced charges in the quantum dots, triggering the AR process. As the voltage increases, the electron current within the emission layer is no longer governed by F−N tunneling but limited by space charges. Then, charge injection becomes balanced, and the EQE increases. These results offer valuable insights into the charge injection and recombination processes within QLEDs, as well as implications for device design.