Unraveling the Most Important Predictors of Eudaimonic and Hedonic Well-Being in Korean Adults: A Machine Learning Approach
Mina Jyung,
Sung-Ha Lee,
Incheol Choi
Abstract:The quest to unravel what contributes to happiness continues to captivate interest in both everyday experiences and academic discourse. Nonetheless, empirical research on the relative importance of possible candidates and their associations with two key aspects of well-being—eudaimonia (the good life) and hedonia (pleasure)—is limited. This study addresses this gap by exploring the relative strength of 32 predictors from multiple domains on psychological well-being (PWB) and subjective well-being (SWB). Using … Show more
Set email alert for when this publication receives citations?
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.