Background: Trauma is a serious medical and economic problem worldwide, and patients with trauma injuries have a poor survival rate following cardiac arrest. This study aimed to create a prediction model specific to prehospital trauma care and to achieve greater accuracy with techniques of machine learning.Methods: This retrospective observational study investigated data of patients who had blunt trauma injuries due to traffic accident and fall trauma from January 1, 2018, to December 31, 2019, using the National Emergency Medical Services Information System, which stores emergency medical service activity records nationwide in the United States. Random forest was used to develop a machine learning model.
Results:Per the prediction model, the area under the curve of the predictive model was 0.95 and negative predictive value was 0.99. The feature importance of the predictive model was the highest for the AVPU scale (an acronym from "Alert, Verbal, Pain, Unresponsive"), followed by oxygen saturation (SpO2). Among patients who were progressing to cardiac arrest, the cutoff value was 89% for SpO2 in unalert patients.Conclusions: Patients whose conditions did not progress to cardiac arrest could be identified with high accuracy by machine learning model techniques.