As a typical thermally activated delayed fluorescence (TADF) emitter with green emission, 4CzIPN has attracted much attention recently. Most studies indicated that 4CzIPN doped in different hosts presented different performances; thus, the hosts should have an obvious influence on its photophysical properties. Herein, the influence of four kinds of hosts, including m-CzPym, m-CzTrz, p-CzPym, and p-CzTrz, on the photophysical properties of 4CzIPN is investigated. Molecular dynamics simulations were performed to simulate the host−guest conformations, and the photophysical properties were studied using the combined quantum mechanics/molecular mechanics method coupled with the thermalvibration correlation function method. It is found that 4CzIPN in doped films has larger transition dipole moments and spin−orbital coupling constants compared to that in nondoped films. Faster radiative decay, intersystem crossing rates, and higher fluorescence efficiency could be obtained in doped films. Our work helps to better understand the photophysical properties of 4CzIPN in doped films and may favor the design of new hosts.