Residual feed intake (RFI) testing has increased selection pressure on biological efficiency in cattle. The objective of this study was to assess the association of the rumen microbiome in inefficient, positive RFI (p-RFI) and efficient, negative RFI (n-RFI) Brahman bulls grazing ‘Coastal’ bermudagrass [Cynodondactylon (L.) Pers.]under two levels of forage allowance (high and low stocking intensity). Sixteen Brahman bulls were previously fed in confinement for 70 d to determine the RFI phenotype. Bulls were then allotted 60 d stocking on bermudagrass pastures to estimate RFI using the n-alkane technique. At the conclusion of the grazing period, rumen liquid samples were collected from each bull by stomach tube to evaluate the rumen microbiome. Extraction of DNA, amplification of the V4-V6 region of the 16S rRNA gene, and 454 pyrosequencing were performed on each sample. After denoising the sequences, chimera checking, and quality trimming, 4,573 ± 1,287 sequences were generated per sample. Sequences were then assigned taxonomy from the Greengenes database using the RDP classifier. Overall, 67.5 and 22.9% of sequences were classified as Bacteroidetes and Firmicutes, respectively. Within the phylum Bacteroidetes, Prevotella was the most predominant genus and was observed in greater relative abundance in p-RFI bulls compared with n-RFI bulls (P = 0.01). In contrast, an unidentified Bacteroidales family was greater in relative abundance for n-RFI bulls than p-RFI (26.7 vs. 19.1%; P = 0.03). Ruminococcaceae was the third most abundant family in our samples, but it was not affected by RFI phenotype. No effect of stocking intensity was observed for bacterial taxa, but there was a tendency for alpha diversity and operational taxonomic unit richness to increase with lower stocking intensity. Results suggested the rumen microbiome of p-RFI Brahman bulls has greater levels of Prevotella, but the bacterial community composition was unaffected by stocking intensity.