Autonomic control of cardiovascular function is mediated by a complex interplay between central, peripheral, and innate cardiac components. This interplay is what mediates the normal cardiovascular response to physiologic and pathologic stressors, including blood pressure, cardiac contractile function, and arrhythmias. However, in order to understand how modern therapies directly affecting autonomic function may be harnessed to treat various cardiovascular disease states requires an intimate understanding of anatomic and physiologic features of the innervation of the heart. Thus, in this review, we focus on defining features of the central, peripheral, and cardiac components of cardiac innervation, how each component may contribute to dysregulation of normal cardiac function in various disease states and how modulation of these components may offer therapeutic options for these diseases.