Biofluid analysis
by optical spectroscopy techniques is attracting
considerable interest due to its potential to revolutionize diagnostics
and precision medicine, particularly for neurodegenerative diseases.
However, the lack of effective biomarkers combined with the unaccomplished
identification of convenient biofluids has drastically hampered optical
advancements in clinical diagnosis and monitoring of neurodegenerative
disorders. Here, we show that vibrational spectroscopy applied to
human tears opens a new route, offering a non-invasive, label-free
identification of a devastating disease such as amyotrophic lateral
sclerosis (ALS). Our proposed approach has been validated using two
widespread techniques, namely, Fourier transform infrared (FTIR) and
Raman microspectroscopies. In conjunction with multivariate analysis,
this vibrational approach made it possible to discriminate between
tears from ALS patients and healthy controls (HCs) with high specificity
(∼97% and ∼100% for FTIR and Raman spectroscopy, respectively)
and sensitivity (∼88% and ∼100% for FTIR and Raman spectroscopy,
respectively). Additionally, the investigation of tears allowed us
to disclose ALS spectroscopic markers related to protein and lipid
alterations, as well as to a reduction of the phenylalanine level,
in comparison with HCs. Our findings show that vibrational spectroscopy
is a new potential ALS diagnostic approach and indicate that tears
are a reliable and non-invasive source of ALS biomarkers.