Social Hymenoptera have played a leading role in development and testing of kin selection theory. Inclusive fitness models, following from Hamilton's rule, successfully predict major life history characteristics, such as biased sex investment ratios and conflict over parentage of male offspring. However, kin selection models poorly predict patterns of caste-biasing nepotism and reproductive skew within groups unless kin recognition constraints or grouplevel selection is also invoked. These successes and failures mirror the underlying kin recognition mechanisms. With reliable environmental cues, such as the sex of offspring or the origin of male eggs, predictions are supported. When only genetic recognition cues are potentially available, predictions are not supported. Mathematical simulations demonstrate that these differing mechanisms for determining kinship produce very different patterns of behavior. Decisions based on environmental cues for relatedness result in a robust mixture of cooperation and noncooperation depending on whether or not Hamilton's rule is met. In contrast, cooperation evolves under a wider range of conditions and to higher frequencies with genetic kin recognition as shared greenbeard traits. This "excess of niceness" matches the existing patterns in caste bias and reproductive skew; individuals often help others at an apparent cost to their inclusive fitness. The results further imply a potential for greenbeardtype kin recognition to create arbitrary runaway social selection for shared genetic traits. Suggestive examples in social evolution may be alloparental care and unicoloniality in ants. Differences in kin recognition mechanisms also can have consequences for maintenance of advantageous genetic diversity within populations.kin nepotism | phenotypic matching | social heterosis S eemingly overtly altruistic behavior, such as individuals accepting sterility, has puzzled evolutionary biologists since the time of Darwin. The first truly predictive framework for how reducing one's own reproduction could be adaptive came from the seminal work of W. D. Hamilton (1). His key insight was that fitness is "inclusive" of both an individual's direct reproduction and indirect gains arising through help provided to genetic relatives. Gains in indirect fitness, often labeled as "kin selection," recast altruism as an ultimately selfish act. Help relatives if the benefit provided (b), prorated by the genetic relatedness of the recipient (r), exceeds the cost to self (c). This is Hamilton's rule: Helping is adaptive if br > c.More than any other taxonomic group, social Hymenoptera (ants, bees, and wasps) sit at an apparent peak of kin selection, with many species having morphologically sterile workers. Kin selection and applications of Hamilton's rule, however, extend far the beyond the evolution of sterile castes to examine many aspects of cooperative (and noncooperative) behavior (2). Thus, social insects have had a pivotal role in the development of kin selection theory and its elevation to being the...