Search citation statements
Paper Sections
Citation Types
Year Published
Publication Types
Relationship
Authors
Journals
Street delivery faces significant challenges due to outdated road infrastructure, which was not designed to handle current vehicle volumes, leading to congestion and inefficiencies, especially in last-mile delivery. Integrating drones into the delivery system offers a promising solution by bypassing congested roads, thereby enhancing delivery speed and reducing infrastructure strain. However, optimizing this multimodal delivery system is complex and data-driven, with real-world data often being costly and restricted. To address this, we propose a synthetic dataset generator that creates diverse and realistic delivery scenarios, incorporating environmental variables, customer profiles, and vehicle characteristics. The key contribution of our work is the development of a dynamic generator for multiple optimization problems with diverse complexities or even combinations of optimization problems. This generator allows for the incorporation of real-world factors such as traffic congestion and synthetically generated factors such as wind conditions and communication constraints, as well as others. The primary objective is to establish a foundation for creating benchmark scenarios that enable the comparison of existing and new approaches. We evaluate the generated dataset by applying it to three optimization problems, including facility location, vehicle routing, and path planning, using different techniques to demonstrate the dataset’s effectiveness and operational viability.
Street delivery faces significant challenges due to outdated road infrastructure, which was not designed to handle current vehicle volumes, leading to congestion and inefficiencies, especially in last-mile delivery. Integrating drones into the delivery system offers a promising solution by bypassing congested roads, thereby enhancing delivery speed and reducing infrastructure strain. However, optimizing this multimodal delivery system is complex and data-driven, with real-world data often being costly and restricted. To address this, we propose a synthetic dataset generator that creates diverse and realistic delivery scenarios, incorporating environmental variables, customer profiles, and vehicle characteristics. The key contribution of our work is the development of a dynamic generator for multiple optimization problems with diverse complexities or even combinations of optimization problems. This generator allows for the incorporation of real-world factors such as traffic congestion and synthetically generated factors such as wind conditions and communication constraints, as well as others. The primary objective is to establish a foundation for creating benchmark scenarios that enable the comparison of existing and new approaches. We evaluate the generated dataset by applying it to three optimization problems, including facility location, vehicle routing, and path planning, using different techniques to demonstrate the dataset’s effectiveness and operational viability.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.