The role of biotic resistance is a subject of debate in our understanding of invasions. We used a well‐known system in the Northern Range of Trinidad, where ephemeral conditions in small pool habitats lead to repeated colonisation by two native species (guppies, Poecilia reticulata, and killifish, Anablepsoides hartii), to ask questions about the role of biotic resistance and intraguild predation in natural, small‐water habitats.
Using horticultural containers under forest cover, alongside constructed bankside mesocosms, we established populations of each species to test hypotheses concerning the conditions under which the guppy, a globally successful invasive species with the potential to establish populations from a single female, could be excluded by a resident intraguild predator, the killifish.
Recruitment success of the guppy depended on founder numbers (propagule size) and introduction order (whether first or last to arrive in the habitat). Single founder guppies always failed to recruit in pools with resident killifish, which we posit is directly attributable to biotic resistance from the resident. However, increased propagule pressure (introduction attempts and propagule number) greatly increased the probability of successful invasion.
Our results have two main implications. The first is that guppies are capable of being successful colonisers even in the presence of a resident intraguild predator. The second is to highlight the role that biotic resistance can play in preventing establishment in small‐water habitats, especially under circumstances of low propagule pressure.
While previous studies have shown that guppies are strong colonisers outside of their native range, our findings suggest that this may not always be the case when there are other small‐bodied fish present. Accordingly, we argue that in small‐water habitats, biotic resistance and intraguild predation relationships should be important considerations when the ability to establish is being assessed for a taxon.