A very common hazard in Rwanda is represented by the instability of steep road cut slopes in lateritic soil. In its natural state, this material appears as a fine-grained weak and altered rock, generally in unsaturated conditions. Steep cut slopes made by this material could remain stable for a long time unless weathering weakens its mechanical behavior and heavy rainfall provokes a rapid landslide. This paper presents the results of an experimental investigation on the microstructural, petrophysical, and geotechnical properties of lateritic soil from a road cut slope located in Kabaya (Ngororero District—Rwanda), which was recently subjected to a landslide. The mechanical properties of the material are strictly related to the geological origin and history of the deposits, their formation environment, and weathering processes. These characteristics were revealed by peculiar microstructural features (micro-texture, porosity, and degree of alteration of original mineral paragenesis). The experimental investigations included identification and classification tests, direct shear tests on saturated samples, and swelling tests. This multidisciplinary approach provided insights into the relationship between geotechnical properties and the microstructural, petrophysical, and chemical characteristics of the altered rocks. This study showed how different levels of chemical alteration operated by weathering processes, in conjunction with brittle deformation related to the tectonic history, formed in the same site two shallow rock layers with similar macro-scale features and mechanical behaviors but markedly different microstructural and chemical properties. The innovative aspect of this research suggests an integrated multidisciplinary approach to considering microstructural aspects in addition to mechanical behavior in the slope stability analyses in lateritic soil. In particular, this study demonstrates the importance of such an approach since the failure mechanism is better explained if it is based on microstructural observations instead of considering the soil shear strength parameters only. This research helped to explain the formation of the landslide failure mechanism in a specific road cut slope, which could be assumed as representative of many other similar slopes subjected to landslides in Rwanda.