Power is a big problem in data centers and a significant fraction of this power is consumed by the storage system. Server storage systems use a large number of disks to achieve high performance, which increases their power consumption. In this paper, we propose to significantly reduce the power consumed by the storage system via intra-disk parallelism, wherein disk drives can exploit parallelism in the I/O request stream. Intra-disk parallelism can facilitate replacing a large disk array with a smaller one, using the minimum number of disk drives needed to satisfy the capacity requirements. We show that the design space of intra-disk parallelism is large and present a taxonomy to formulate specific implementations within this space. Using a set of commercial workloads, we perform a limit study to identify the key performance bottlenecks that arise when we replace a storage array that is tuned to provide high performance with a single high-capacity disk drive. These are the bottlenecks that intra-disk parallelism would need to alleviate. We then explore a particular intra-disk parallelism approach, where a disk is equipped with multiple arm assemblies that can be independently controlled, and evaluate three disk drive designs that embody this form of parallelism. We show that it is possible to match, and even surpass, the performance of a storage array for these workloads by using a single disk drive of sufficient capacity that exploits intra-disk parallelism, while significantly reducing the power consumed by the storage system compared to the multi-disk configuration. We evaluate the performance and power consumption of disk arrays composed of intra-disk parallel drives, discuss the engineering issues involved in implementing such drives, and finally provide a preliminary cost-benefit analysis of building and deploying intra-disk parallel drives, using cost data obtained from several companies in the disk drive industry.