A mathematical model has been performed for momentum, temperature, and mass concentration of a time-dependent Casson fluid flow between a long vertical wavy wall and a parallel wavy wall subject to convective boundary conditions. Perturbation technique is used to convert the coupled partial differential equations for velocity, temperature, and mass concentration to systems of ordinary differential equations. Analytical results for these differential equations are computed. The effects of various physical parameters such as thermal conductivity, thermal Grashof number, solutal Grashof number, heat absorption parameter, and Biot number are analysed graphically.