The unsteady MHD free convection and mass transfer boundary layer flow of an incompressible electrically conducting fluid past an accelerated infinite vertical flat plate embedded in porous medium with ramped wall temperature is considered here. It is assumed that the plate accelerates in its own plane in the presence of thermal radiation incorporating first order chemical reaction. The governing equations are solved analytically using the Laplace transformation technique. The flow phenomenon has been characterized with the help of flow parameters such as permeability parameter, Hartmann number, phenomenon has been characterized with the help of flow parameters such as permeability parameter, Hartmann number, thermal radiation parameter etc. The influences of these parameters on the velocity, temperature field and concentration distribution have been studied and the results are presented graphically and discussed quantitatively. Also, the effects of the various parameters on the skin friction coefficient, the rate of heat and mass transfer at the surface are discussed.