Abstract:Feature selection has been widely used in machine learning and data mining since it can alleviate the burden of the so-called curse of dimensionality of high-dimensional data. However, in previous works, researchers have designed feature selection methods with the assumption that all the information from a data set can be observed. In this paper, we propose unsupervised and supervised feature selection methods for use with incomplete data, further introducing an L2,1 norm and a reconstruction error minimizatio… Show more
Set email alert for when this publication receives citations?
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.