2023
DOI: 10.48550/arxiv.2301.02505
|View full text |Cite
Preprint
|
Sign up to set email alerts
|

Unsupervised attack pattern detection in honeypot data using Bayesian topic modelling

Abstract: Cyber-systems are under near-constant threat from intrusion attempts. Attacks types vary, but each attempt typically has a specific underlying intent, and the perpetrators are typically groups of individuals with similar objectives. Clustering attacks appearing to share a common intent is very valuable to threat-hunting experts. This article explores topic models for clustering terminal session commands collected from honeypots, which are special network hosts designed to entice malicious attackers. The main p… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...

Citation Types

0
0
0

Publication Types

Select...

Relationship

0
0

Authors

Journals

citations
Cited by 0 publications
references
References 26 publications
0
0
0
Order By: Relevance

No citations

Set email alert for when this publication receives citations?