Fuzzy VIKOR C-means (FVCM) is a kind of unsupervised fuzzy clustering algorithm that improves the accuracyand computational speed of Fuzzy C-means (FCM). So it reduces the sensitivity to noisy and outlier data, and enhances performance and quality of clusters. Since FVCM allocates some data to a specific cluster based on similarity technique, reducing the effect of noisy data increases the quality of the clusters. This paper presents a new approach to the accurate location of noisy data to the clusters overcoming the constraints of noisy points through fuzzy support vector machine (FSVM), called FVCM-FSVM, so that at each stage samples with a high degree of membership are selected for training in the classification of FSVM. Then, the labels of the remaining samples are predicted so the process continues until the convergence of the FVCM-FSVM. The results of the numerical experiments showed the proposed approach has better performance than FVCM. Of course, it greatly achieves high accuracy.