The use of supervised methods in space science have demonstrated powerful capability in classification tasks, but purely unsupervised methods have been less utilized for the classification of spacecraft observations. We use a combination of unsupervised methods, being principal component analysis, Self‐Organizing Maps, and hierarchical agglomerative clustering, to classify THEMIS and MMS observations as having occurred in the magnetosphere, magnetosheath, or the solar wind. The resulting classification are validated visually by analyzing the distribution of classifications and studying individual time series as well as by comparison to the labeled data set of a previous model, against which ours has an accuracy of 99.4. The model has a variety of applications beyond region classification such as deeper hierarchical analysis, magnetopause and bow shock crossing identification, and identification of bursty bulk flows, hot flow anomalies, and foreshock bubbles.